Panchanathan was the founding director of the School of Computing and Informatics and was instrumental in founding the Biomedical Informatics Department at ASU. He also served as the chair of the Computer Science and Engineering Department. He founded the Center for Cognitive Ubiquitous Computing (CUbiC) at ASU. CUbiC’s flagship project ICARE, for individuals who are blind and visually impaired, won the Governor’s Innovator of the Year-Academia Award in November 2004. In 2014, Panchanathan was appointed by President Barack Obama to the U.S. National Science Board (NSB) and is Chair of the Committee on Strategy. He was appointed by former U.S. Secretary of Commerce Penny Pritzker to the National Advisory Council on Innovation and Entrepreneurship (NACIE). Panchanathan is a Fellow of the National Academy of Inventors (NAI), a Fellow of the American Association for the Advancement of Science (AAAS), and a Fellow of the Canadian Academy of Engineering. He is also the Fellow of the IEEE and SPIE. He is currently serving as the Chair of the Council on Research (CoR) within the Association of Public and Land-grant Universities (APLU). His research interests are in the areas of human-centered multimedia computing, haptic user interfaces, person-centered tools and ubiquitous computing technologies for enhancing the quality of life for individuals with disabilities, machine learning for multimedia applications, medical image processing, and media processor designs.

Seminar Abstract

Human-centered multimedia computing (HCMC) focuses on a tight engagement of humans in the design, development and deployment of multimedia solutions. Today’s multimedia technologies largely cater to the needs of the “able” population, resulting in HCMC solutions that mostly meet the needs of that community. However, individuals with disabilities have specific requirements that necessitate a personalized, adaptive approach to multimedia computing. In addition, individuals with disabilities have largely been absent in the design process, and have to adapt themselves (often unsuccessfully) to available solutions. To address this challenge, we recently introduced the concept of person-centered multimedia computing (PCMC), where the emphasis is on understanding the individual user’s needs, expectations and adaptations towards designing, developing and deploying effective multimedia solutions. In this talk, PCMC will be discussed from two application viewpoints: (i) social interaction assistant to enrich the interaction experience of individuals with visual impairments and (ii) cyber-physical systems for stroke rehabilitation. Both these applications embody person-centeredness as the underlying methodology. Our research not only demonstrates the significant potential in using person centered multimedia solutions to enrich the lives of individuals with disabilities, but also the criticality of using a person centered approach to effectively address complex signal processing challenges in designing real-world solutions.